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Hm, when did this happen again?
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News Citation Networks



News Citation Network Extraction
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News Citation Network Overview

News articles from RSS feeds:

I Politics and business feeds

I 34 English news outlets
(USA, UK, AUS, CAN, GER, CHN, QAT)

I 2 years (Nov 2015 - Oct 2017)

I 244.6 thousand articles

I 367.2 thousand edges

Used data:

I Hyperlinks in the article body

I Publication dates

I Temporal expressions
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News Outlet Statistics (sample)

short news outlet days 〈articles〉 〈temp exp〉 otherin otherout

AT The Atlantic 334 7.2 10.5 16.7 50.6
BBC British Bc. Corp. 730 8.1 6.5 19.1 8.0
DW Deutsche Welle 334 1.2 6.1 48.1 5.9
FOX Fox News 548 2.7 9.8 0.0 0.0
NPR National Public Radio 334 0.4 8.4 63.6 58.5
NY The New Yorker 548 3.0 13.2 33.5 30.6
NYT New York Times 669 23.8 10.7 26.8 4.7
SMH Sydney Morn. Herald 548 2.3 7.0 3.0 51.9
WP Washington Post 548 62.7 9.4 13.7 5.1
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Evolution of Network Metrics

clustering coefficient average path length

average degree undirected diameter
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Exploring Citation Chains
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Article Publication Time Prediction



Task Definition: Publication Time Prediction
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Available News Citation Network Data

Predict article publication times from:

I Citation network topology

I Publication dates of adjacent articles

I Temporal expressions in adjacent articles

I Not the metadata of the article itself

I Not the article content
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Feature Extraction



Network Topology Features

Node degree-based features:

I Incoming degree

I Outgoing degree

I Undirected degree

Density-based features:

I Undirected local clustering coe�icient

Centrality-based features:

I Betweenness centrality

I Incoming closeness centrality

I Outgoing closeness centrality

I Page Rank centrality
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Temporal Network Features
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Temporal Expression Features

Correlation of temporal expressions:

I good with publication dates of
referencing articles (incoming edges)

I bad with publication dates of
referenced articles (outgoing edges)
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Missing Features and Imputation

Missing features

I 30.8% of feature values are missing

I 89.6% of articles are missing at least one feature

Imputation of missing values

I Column mean of the feature
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Evaluation



Regression Methods

Used regression methods:

I BASE: Baseline (average publication date of adjacent articles)

I LR: Linear regression

I BAY: Bayesian ridge regression (Laplace model)

I RF: Random forest

I GB: Gradient boosting (Laplace distribution, decision trees)

I SVM: Support vector machine (radial kernel)

I NN: Neural network (feedforward, one hidden layer)
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Evaluation Results: Mean Absolute Error (days)

BASE LR BAY NN RF GB SVM

all 66.72 60.46 59.61 26.88 24.98 22.66 26.19
in 88.88 66.48 87.55 34.03 32.25 27.49 32.29

out 87.32 59.54 40.24 32.52 30.10 26.68 30.77
in+out 18.68 55.45 54.95 12.62 11.23 12.76 14.31
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Distribution of Absolute Errors
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Recall by Varying Absolute Error
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Feature Importance: Random Forest
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Feature Importance: Gradient Boosting
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Summary & Resources



Summary

News citation networks:

I Focus on anchored links inside the article body

I Constructed like a citation network between articles

Publication date prediction:

I Can be framed as a regression problem

I Average prediction error of 3 weeks

I Temporal network features are most discriminative
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Resources

Data and implementation are available online:

I [data] News citation network (including URLs)

I [data] Temporal annotations

I [code] Publication date prediction

https://dbs.ifi.uni-heidelberg.de/resources/data/
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